Vol. 3 No. 1 (2022): April
Open Access
Peer Reviewed

Incidence of Klebsiella pneumoniae producing Metallo Beta-Lactamase (MBL) at RSUP Dr. Wahidin Sudirohusodo Makassar

Authors

Muhammad Jen Hamdani , Natsir Djide , Mansyur Arif

DOI:

10.29303/sjp.v3i1.111

Downloads

Received: Jun 28, 2021
Accepted: Oct 06, 2021
Published: Apr 28, 2022

Abstract

Bacterial resistance to antibiotic is one of the factors triggering infection therapy failure. This study was conducted to determine the prevalence of carbapenem-resistance Klebsiella pneumoniae infection and the phenotype of carbapenem-resistant Metallo-Beta-Lactamase (MBL)-producing Klebsiella pneumoniae isolates at RSUP Dr. Wahidin Sudirohusodo Makassar. This study included Klebsiella pneumoniae identification on each infectious patient’s isolates. The sensitivity test of antibiotics, phenotype confirmatory test, and MBL phenotypic test were conducted using agar diffusion Kirby-Bauer, Vitek-2-Compact, and Double Disc Synergy Test (DDST) method, respectively. As the result, the antibiotic sensitivity test using the Vitek-2-Compact method on 50 clinical samples (pus, sputum, blood. tissue, urine, brain fluid, and feces) found that 10 isolates (20%) were resistant to carbapenem.  The phenotypic test using the Double Disc Synergy Test (DDST) method found that carbapenem-resistant isolates caused by the production of Metallo Beta Lactamase (MBL) enzymes were 2 isolates or 20% of the total carbapenem-resistant isolates.

Keywords:

Carbapenem, Double Disc Synergy Test (DDST), Klebsiella pneumoniae, Metallo-Beta-Lactamase

References

Bora, A., Sanjana, R., Jha, B. K., Mahaseth, S. N., & Pokharel, K. (2014). Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res Notes 7, 557. https://doi.org/10.1186/1756-0500-7-557

Chandler, C. (2017). Antibiotic prescribing and resistance: Views from low - and middle - income prescribing and dispensing professionals.

Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., Sevransky, J. E., Sprung, C. L., Douglas, I. S., Jaeschke, R., Osborn, T. M., Nunnally, M. E., Townsend, S. R., Reinhart, K., Kleinpell, R. M., Angus, D. C., Deutschman, C. S., Machado, F. R., Rubenfeld, G. D., Webb, S. A., Beale, R. J., Vincent, J., Moreno, R., & the Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. (2013). Surviving Sepsis Campaign. Critical Care Medicine, 41(2), 580-637 doi: 10.1097/CCM.0b013e31827e83af

Nepal, K., Pant, N. D., Neupane, B., Belbase, A., Baidhya, R., Shrestha, R. K., Lekhak, B., Bhatta, D. R., & Jha, B. (2017). Extended spectrum beta-lactamase and metallo beta-lactamase production among Escherichia coli and Klebsiella pneumoniae isolated from different clinical samples in a tertiary care hospital in Kathmandu, Nepal. Annals of clinical microbiology and antimicrobials, 16(1), 62. https://doi.org/10.1186/s12941-017-0236-7

Panchal, C. A., Oza, S. S., & Mehta, S. J. (2017). Comparison of four phenotypic methods for detection of metallo-β-lactamase-producing Gram-negative bacteria in rural teaching hospital. Journal of Laboratory Physicians., 9(2), 81-83. doi:10.4103/0974-2727.199624

Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: past, present, and future. Antimicrobial agents and chemotherapy, 55(11), 4943–4960. https://doi.org/10.1128/AAC.00296-11

Parathon, H., Kuntaman, K., Widiastoety, T. H., Muliawan, B. T., Karuniawati, A., Qibtiyah, M., Djanun, Z., Tawilah, J. F., Aditama, T., Thamlikitkul, V., & Vong, S. (2017). Progress towards antimicrobial resistance containment and control in Indonesia. BMJ (Clinical research ed.), 358, j3808, 31-35. https://doi.org/10.1136/bmj.j3808

Pierce, V. M., Simner, P. J., Lonsway, D. R., Roe-Carpenter, D. E., Johnson, J. K., Brasso, W. B., Bobenchik, A. M., Lockett, Z. C., Charnot-Katsikas, A., Ferraro, M. J., Thomson, R. B. Jr., Jenkins, S. G., Limbago, B. M., & Das, S. (2017). Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J Clin Microbiol 55:2321–2333. https://doi.org/10 .1128/JCM.00193-17

Pincus, D. H. (2013). Microbial identification using the Biomerieux Vitek 2 System. Biomerieux inc. Hazelwood, USA.

Saidel-Odes, L., & Borer, A. (2013). Limiting and controlling carbapenem-resistant Klebsiella pneumoniae. Infection and drug resistance, 7, 9–14. https://doi.org/10.2147/IDR.S44358

Sawano, T., Tsubokura, M., Leppold, C., Ozaki, A., Fujioka, S., Nemoto, T., Kato, S., Oikawa, T., & Kanazawa, Y. (2016). Klebsiella Pneumoniae sepsis deteriorated by uncontrolled underlying disease in a decontamination worker in Fukushima, Japan. Journal of occupational health, 58(3), 320–322. https://doi.org/10.1539/joh.15-0292-CS

Viswamohanan, I., Lakshminarayana, S. A., Bhargavi, L., Harshan, K. H., & Jitendranath, A. (2016). A Study on Metallo-beta-lactamase Mediated Resistance in Clinical Isolates of Pseudomonas aeruginosa. International Journal of Current Microbiology and Applied Sciences, 5(12), 499-506. DOI:10.20546/ijcmas.2016.512.054

Author Biographies

Muhammad Jen Hamdani, Universitas Hasanuddin Makassar

Natsir Djide, Universitas Hasanuddin Makassar

Mansyur Arif, Universitas Hasanuddin Makassar

Downloads

Download data is not yet available.

How to Cite

Hamdani, M. J., Djide, N., & Arif, M. (2022). Incidence of Klebsiella pneumoniae producing Metallo Beta-Lactamase (MBL) at RSUP Dr. Wahidin Sudirohusodo Makassar. Sasambo Journal of Pharmacy, 3(1), 6–10. https://doi.org/10.29303/sjp.v3i1.111