Vol. 3 No. 1 (2022): April
Open Access
Peer Reviewed

Molecular docking of the bioactive compound Ocimum sanctum as an inhibitor of Sap 1 Candida albicans

Authors

DOI:

10.29303/sjp.v3i1.157

Downloads

Received: Mar 15, 2022
Accepted: Apr 20, 2022
Published: Apr 28, 2022

Abstract

Candida albicans (C. albicans) is the norm microbiota that lives in humans' oral cavity, digestive tract, and urinary tract. However, C. albicans, under certain circumstances can cause superficial infections of the mucosa such as oropharyngeal candidiasis (OPC) or vulvovaginal candidiasis (VVC) and even systemic infections. Secreted aspartic proteinase (Sap) 1 plays a role in the phenotype change of C. albicans. The study aimed to perform molecular docking using the bioactive compound Ocimum sanctum to inhibit Sap 1 C. albicans. Methods used include preparation of protein structures, ligands preparation, simulation of docking, and analysis and visualization. The results showed Apigenin had the highest binding energy of 7,792 kcal/mol and was followed by methyl eugenol ligand 5,361 kcal/mol, Citral 5,307 kcal/mol, Ursolic acid 4,967 kcal/mol, and Taxol 2,118 kcal/mol. Known interactions from the docking results showed that the four ligands hit the catalytic residue Asp32/Asp218, but only ursolic acid did not hit the catalytic residue. This study concludes that all ligands have binding energies that inhibit Sap 1, resulting in various interactions, amino acid residue contacts, and dissociation constants.

Keywords:

Candida albicans, Molecular docking, Sap 1, Ocimum sanctum

References

Ali, N. S. M., Salleh, A. B., Leow, T. C., Rahman, R. N. Z. R. A., & Ali, M. S. M. (2020). The Influence of Calcium toward Order/Disorder Conformation of Repeat-in-Toxin (RTX) Structure of Family I.3 Lipase from Pseudomonas fluorescens AMS8. Toxins, 12(579), 1–14. https://doi.org/10.3390/toxins12090579

Borah, R., & Biswas, S. P. (2018). Tulsi ( Ocimum sanctum ), excellent source of phytochemicals. International Journal of Environment, Agriculture and Biotechnology, 3(5), 1732–1738.

Borelli, C., Ruge, E., Jung, H. L., Schaller, M., Vogelsang, A., Monod, M., … Maskos, K. (2008). X-ray structures of Sap1 and Sap5: Structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins: Structure, Function and Genetics, 72(4), 1308–1319. https://doi.org/10.1002/prot.22021

Correia, A., Lermann, U., Teixeira, L., Cerca, F., Botelho, S., Gil Da Costa, R. M., … Pais, C. (2010). Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infection and Immunity, 78(11), 4839–4849. https://doi.org/10.1128/IAI.00248-10

Cortés-Benítez, F., Roy, J., Perreault, M., Maltais, R., & Poirier, D. (2021). 16-Picolyl-androsterone derivative exhibits potent 17β-HSD3 inhibitory activity, improved metabolic stability and cytotoxic effect on various cancer cells: Synthesis, homology modeling and docking studies. Journal of Steroid Biochemistry and Molecular Biology, 210(October 2020), 1–13. https://doi.org/10.1016/j.jsbmb.2021.105846

Dhorajiwala, TM., Halder, ST., Samant, L. (2019). Comparative in silico molecular docking analysis of L-Threonine-3-Dehydrogenase, a protein target against african trypanosomiasis using selected phytochemicals. J App Biotechnol, 6(3), 101-108. doi:10.29252/JABR.06.03.04

Gao, M., Nie, K., Qin, M., Xu, H., Wang, F., & Liu, L. (2021). Molecular mechanism study on stereoâ€selectivity of α or β hydroxysteroid dehydrogenases. Crystals, 11(3), 1–25. https://doi.org/10.3390/cryst11030224

Gonzalez, T. L., Rae, J. M., Colacino, J. A., & Richardson, R. J. (2019). Homology models of mouse and rat estrogen receptor-α ligand-binding domain created by in silico mutagenesis of a human template: Molecular docking with 17β-estradiol, diethylstilbestrol, and paraben analogs. Computational Toxicology, 10(October 2018), 1–16. https://doi.org/10.1016/j.comtox.2018.11.003

Hariono, M., & Rollando. (2016). Molecular docking of compounds from Chaetomium sp. against human estrogen receptor alpha in searching anti breast cancer. Jurnal Farmasi Sains dan Komunitas, 13(1), 35–43.

Hube, B., Sanglard, D., Odds, F. C., Hess, D., Monod, M., Schäfer, W., … Gow, N. A. R. (1997). Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infection and Immunity, 65(9), 3529–3538. https://doi.org/10.1128/iai.65.9.3529-3538.1997

Kharisma, V. D., Ansori, A. N. M., Widyananda, M. H., Utami, S. L., & Nugraha, A. P. (2020). Molecular simulation: The potency of conserved region on E6 HPV-16 as a binding target of black tea compounds against cervical cancer. Biochemical and Cellular Archives, 20(August), 2795–2802. https://doi.org/10.35124/bca.2020.20.S1.2795

Naglik, J., Albrecht, A., Bader, O., & Hube, B. (2004). Candida albicans proteinases and host/pathogen interactions. Cellular Microbiology, 6(10), 915-926. doi:10.1111/j.1462-5822.2004.00439.x

Pandey, A. K., Singh, P., & Tripathi, N. N. (2014). Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pacific Journal of Tropical Biomedicine, 4(9), 682–694. https://doi.org/10.12980/APJTB.4.2014C77

Pandey, S. K., Yadav, S., Goel, Y., Temre, M. K., Singh, V. K., & Singh, S. M. (2019). Molecular docking of anti-inflammatory drug diclofenac with metabolic targets: Potential applications in cancer therapeutics. Journal of Theoretical Biology, 465, 117–125. https://doi.org/10.1016/j.jtbi.2019.01.020

Polke, M., Hube, B., & Jacobsen, I. D. (2015). Candida survival strategies. In Advances in Applied Microbiology (Vol. 91). https://doi.org/10.1016/bs.aambs.2014.12.002.

Raj, V., Lee, J.-H., Shim, J.-J., & Lee, J. (2022). Antiviral activities of 4H-chromen-4-one scaffold-containing flavonoids against SARS–CoV–2 using computational and in vitro approaches. In Journal of Molecular Liquids (Vol. 353). https://doi.org/10.1016/j.molliq.2022.118775

Shakya, A. K. (2016). Medicinal plants: Future source of new drugs. International Journal of Herbal Medicine, 4(4), 59–64. https://doi.org/10.13140/RG.2.1.1395.6085

Sjam, K. R. (2012). Kolonisasi Candida dalam Rongga Mulut. Majalah Kedokteran FK UKI, 28(1), 39–47.

Srivastava, S., Shree, P., Pandey, H., & Tripathi, Y. B. (2018). Incretin hormones receptor signaling plays the key role in antidiabetic potential of PTY-2 against STZ-induced pancreatitis. Biomedicine and Pharmacotherapy, 97(July 2017), 330–338. https://doi.org/10.1016/j.biopha.2017.10.071

Tumilaar, S. G., Siampa, J. P., & Tallei, T. E. (2021). Penambatan Molekuler Senyawa Bioaktif dari Ekstrak Etanol Daun Pangi (Pangium edule) Terhadap Reseptor Protease HIV-1. Jurnal Ilmiah Sains, 21(1), 6–16. https://doi.org/10.35799/jis.21.1.2021.30282

Valmas, A., Dedes, G., & Dimarogona, M. (2020). Structural Studies of a Fungal Polyphenol Oxidase with Application to Bioremediation of Contaminated Water. Proceedings, 66(1), 10. https://doi.org/10.3390/proceedings2020066010

Venkatachalam, K. V., & Ettrich, R. H. (2021). Role of aspartic acid residues D87 and D89 in APS kinase domain of human 3′-phosphoadenosine 5′-phosphosulfate synthase 1 and 2b: A commonality with phosphatases/kinases. Biochemistry and Biophysics Reports, 28, 101155. https://doi.org/10.1016/j.bbrep.2021.101155

Wächtler, B., Citiulo, F., Jablonowski, N., Förster, S., Dalle, F., Schaller, M., … Hube, B. (2012). Candida albicans-epithelial interactions: Dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS ONE, 7(5). https://doi.org/10.1371/journal.pone.0036952

Author Biography

Gusnia Meilin Gholam, IPB University

Downloads

Download data is not yet available.

How to Cite

Gholam, G. M. (2022). Molecular docking of the bioactive compound Ocimum sanctum as an inhibitor of Sap 1 Candida albicans . Sasambo Journal of Pharmacy, 3(1), 18–24. https://doi.org/10.29303/sjp.v3i1.157